## The Power to Amaze.



Name: Steve Mappus Systems Engineer

Date: October 02, 2014

www.psma.com, power@psma.com

## Agenda

> Topology Overview
> Non Isolated Topologies
> Isolated DC-DC Derivatives
> Single Ended Topologies

- Transformer Reset Techniques
- Flyback Converter
- Forward Converter
> Double Ended Topologies
- Push Pull
- Half Bridge
- Full Bridge
$>$ Summary


## Isolated Power Topology Derivatives



## Other Topologies?

> Numerous Variations Exist

- Sepic
- Cuk
- Current Fed Buck
- Tapped Inductors
- Multiple Outputs
- Interleaving
- More?
> Different Ways to Operate Them
- Voltage Mode Control
- Current Mode Control
- Digital Control
- Variable Frequency
- CCM, DCM, BCM
- ZVS
- ZCS
- Synchronous Rectification
> Some Practical Converter Topology Advice
- Most power conversion requirements can be met using one or more of the 8 mainstream topologies
- Save more difficult topologies for unique application requirements
- Beware of publications proclaiming the "best" topology


## FAIRCHILD ${ }^{\text {w }}$

 $85 \mathrm{~V}<\mathrm{V}_{\mathrm{AC}}<265 \mathrm{~V}$

## Multi-Stage Topology

Typical Distributed Power System
48 V to 12 V IBC (Intermediate Bus Converter)
 sequencing, redundancy, digital control, etc
Efficiency example

$$
\begin{aligned}
& \eta_{S Y S}=\eta_{P F C} \times \eta_{D C} \times \eta_{D C} \times \eta_{P O L} \\
& \eta_{S Y S}=98 \% \times 95 \% \times 95 \% \times 96 \%=84.9 \%
\end{aligned}
$$

## FAIRCHILD <br> Single-Stage Topology PFC Flyback


> Difficult to meet: Low cost, high PF, low THD, high efficiency, wide $\mathrm{V}_{\mathrm{IN}}$ with single-stage

$$
\eta=84.9 \%
$$

# Non-Isolated Converter Topologies 

## FAIRCHILD

## Boost Converter (Step Up)



Inductor volt-second balance:


Boost CCM transfer function:
$\frac{V_{\text {OUT }}}{V_{\text {IN }(t)}}=\frac{T_{S}}{t_{\text {OFF }}}=\frac{1}{1-D}$
$>\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {OUT }}$
$>$ Most efficient at lower D
> Continuous input current
> CCM, BCM, DCM modes

$\left\langle V_{L}\right\rangle_{T_{S}}=V_{\text {IN }(t)} \times t_{\text {ON }}+\left[\left(V_{\text {IN }(t)}-V_{\text {OUT }}\right) \times t_{\text {OFF }}\right]=0$
$V_{\text {IN }(t)} \times\left(t_{\text {ON }}+t_{\text {OFF }}\right)=V_{\text {OUT }} \times t_{\text {OFF }}$
$V_{I N(t)} \times T_{S}=V_{\text {OUT }} \times t_{\text {OFF }}$



CCM
(Fixed Freq)


BCM
(Variable Freq)


DCM
(Fixed Freq)


## Buck Converter (Step Down)

Inductor volt-second balance:


Buck CCM transfer function:

$$
\begin{aligned}
& \left\langle V_{L}\right\rangle_{T_{S}}=\left[\left(V_{I N}-V_{\text {OUT }}\right) \times t_{\text {ON }}\right]-V_{\text {OUT }} \times t_{\text {OFF }}=0 \\
& V_{I N} \times t_{\text {ON }}=V_{\text {OUT }} \times\left(t_{\text {ON }}+t_{\text {OFF }}\right) \\
& V_{I N} \times t_{\text {ON }}=V_{\text {OUT }} \times T_{S}
\end{aligned}
$$

$$
\frac{V_{O U T}}{V_{I N}}=\frac{t_{O N}}{T_{S}}=D
$$

$$
>\mathrm{V}_{\mathrm{IN}}>\mathrm{V}_{\text {OUT }}
$$

$$
>\text { Most efficient at higher D }
$$

## FAIRCHILD ${ }^{\text {w }}$

## Buck-Boost Converter (Inverting)



Inductor volt-second balance:
$\left\langle V_{L}\right\rangle_{T_{S}}=V_{\text {IN }} \times t_{\text {ON }}+V_{\text {OUT }} \times t_{\text {OFF }}=0$
$V_{I N} \times t_{\text {ON }}=-\left(V_{\text {OUT }} \times t_{\text {OFF }}\right)$
$\frac{V_{O U T}}{V_{I N}}=-\left(\frac{t_{O N} / T_{S}}{t_{O F F} / T_{S}}\right)=-\left[\frac{t_{O N} / T_{S}}{\left(T_{S}-t_{O N}\right) / T_{S}}\right]$


Buck-Boost CCM transfer function:

$$
\frac{V_{O U T}}{V_{I N}}=-\left(\frac{D}{1-D}\right)
$$

$>\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {OUT }}$ or $\mathrm{V}_{\text {IN }}>\mathrm{V}_{\text {OUT }}$
$>$ Used for negative $\mathrm{V}_{\text {OUT }}$

## Single Ended Converter Topologies

## Benefits of a Transformer

1. Provides primary to secondary safety isolation - subject to regulatory standards

2. Voltage conversion resolution


Ex: For $F_{S W}=300 \mathrm{kHz}\left(\mathrm{T}_{\mathrm{SW}}=3.33 \mu \mathrm{~s}\right), \mathrm{N}_{\mathrm{P}}: \mathrm{N}_{\mathrm{S}}=4: 1,36 \mathrm{~V}<\mathrm{V}_{\mathrm{IN}}<75$ and $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$

Buck Converter
$6 \%<$ D $<14 \%$
$200 \mathrm{~ns}<\mathrm{t}_{\mathrm{ON}}<467 \mathrm{~ns}$

Isolated Buck (Forward) Converter
$27 \%<$ D < 55\%
$900 \mathrm{~ns}<\mathrm{t}_{\mathrm{ON}}<1.8 \mu \mathrm{~s}$
3. Potential ground differences between primary and secondary
4. Multiple outputs can be regulated/quasi-regulated

## FAIRCHILD

## Transformer Characteristics


> Ideal transformer

- Perfect coupling between $N_{p}: N_{s}$
- No energy storage

$>$ Flyback "transformer"
- Really a coupled inductor
- Primary energy stored during $t_{\mathrm{ON}}$
- Power transferred during $t_{\text {OFF }}$


Parasitic Transformer Model


$$
\mathrm{CCM} \text { Flyback }\left(\mathrm{V}_{\mathrm{DS}}=32 \mathrm{~V}, \mathrm{~V}_{\mathrm{LK}}=12 \mathrm{~V}\right)
$$

## Single Ended Topologies Defined

## Single Ended - Transformer operation limited to first quadrant


(a) Forward Converter Transformer Hysteresis


(c) Gapped Flyback "Transformer"

(b) Flyback Converter

## FAIRCHILD ${ }_{\text {w }}$ <br> Flyback Converter Derivation


a) Non-isolated buck-boost
b) Coupled inductor buck-boost
c) Isolated buck-boost
d) Isolated flyback converter
e) D can be in return path

## FAIRCHILD ${ }_{\text {w }}$

## Flyback Converter

## сCM Operation


(b) CCM Waveforms

- $50 \%$ duty cycle limit
- Right half plane zero in CCM
- Output rectifier reverse recovery


## Quasi-Resonant Flyback

## Conventional Valley Switching

Wide frequency variation depends on output load condition


Output load decreases


Operating frequency increases




## Quasi-Resonant Flyback

Window Valley Switching
> Frequency variation depends on output load conditions
> Operating frequency is within narrow variation ( 127.5 kHz ~ 92.6 kHz )


## Two-Switch, Quasi-Resonant Flyback




## Two-Switch Quasi-Resonant Flyback Measured Waveforms


> $\mathrm{V}_{\mathrm{DS}}$ Valley Switching on First Valley

- $\mathrm{V}_{\text {OUT }}<1 / 2 \mathrm{~V}_{\text {IN }}$
- $\quad D=42 \%$
- $F_{S}=63 \mathrm{kHz}$
- $\mathrm{P}_{\text {OUT }}=85 \mathrm{~W}$

> Extended Window Valley Switching
- $\mathrm{V}_{\text {OUT }}<1 / 2 \mathrm{~V}_{\text {IN }}$
- $D=11 \%$
- $F_{S}=68 \mathrm{kHz}$
- $P_{\text {OUT }}=24 \mathrm{~W}$


## Forward Converter Basics


(a) Forward Converter with Reset Winding
> Really a Transformer Coupled Buck
> CCM Transfer Function

$$
\frac{V_{O}}{V_{I N}}=\frac{N_{S}}{N_{P}} \times D
$$

> Limitations

- Q1 switching loss (hard switched)
- D2 conduction loss
- $\mathrm{Q} 1\left(\mathrm{~V}_{\mathrm{DS}}\right)>2 \mathrm{~V}_{\mathrm{IN}}$
- $50 \%$ duty cycle limit $\left(N_{P}: N_{R}=1: 1\right)$

(b) DCM Waveforms ( $\mathrm{D}<0.5$ )


## FAIRCHILD ${ }^{\text {w }}$

## Problems with Duty Cycle > 50\%


> Common practice is to use 1:1 bifilar transformer winding for $N_{P}: N_{R}$
$\Rightarrow \mathrm{D}=40 \%$

- Converter operates in DCM
- Transformer is completely reset on every switching cycle

$>D=67 \%$
- Converter wants to operate in CCM
- Transformer can NOT reset on every switching cycle
- $\mathrm{I}_{\mathrm{MAG}}$ increases due to volt second product imbalance
- Transformer saturation will result
- Operation beyond $D=50 \%$ requires additional reset voltage


## Duty Cycle Greater Than 50\%



Conclusion: Reset winding technique, $\mathrm{D}>50 \%$ not practical for high $\mathrm{V}_{\mathrm{IN}}$ applications due to additional MOSFET $\mathrm{V}_{\text {DS }}$ stress

## Active Clamp Forward Converter


> Advantages

- Reduced MOSFET V DS voltage stress
- Higher efficiency through ZVS
- Use of parasitic elements
- Higher frequency operation
- Suitable for off-line (HS clamp) or DC-DC (LS clamp)
> Disadvantages
- Conditional ZVS only
- Dual primary side gate drive with accurate deadtime control and max duty cycle clamp required
- Poor transient response due to $\mathrm{C}_{\mathrm{CL}}$
> Transfer Function

$$
\frac{V_{O}}{V_{I N}}=\frac{N_{S}}{N_{P}} \times D
$$

## FAIRCHILD <br> Active Clamp Forward Converter Two Versions



| PARAMETER | HIGH-SIDE ACTIVE CLAMP (off-line) | LOW-SIDE ACTIVE CLAMP (telecom) |
| :---: | :---: | :---: |
| $V_{\text {DS }}$ | $\left(\frac{1}{1-D}\right) \times V_{I N}$ | $\left(\frac{1}{1-D}\right) \times V_{I N}$ |
| $\mathrm{V}_{\text {RESET }}$ | $\left(\frac{D}{1-D}\right) \times V_{I N}$ | $\left(\frac{D}{1-D}\right) \times V_{I N}$ |
| $\mathrm{V}_{\mathrm{CL}}$ | $\left(\frac{D}{1-D}\right) \times V_{I N}$ | $\left(\frac{1}{1-D}\right) \times V_{\text {IN }}$ |
| $\mathrm{C}_{\mathrm{CL}}$ <br> (applied voltage) | Lower voltage by $\mathrm{V}_{\mathrm{IN}}$ volts Highest $\mathrm{V}_{\mathrm{CL}}$ occurs at $\mathrm{D}_{\mathrm{MAX}}$ | Higher voltage by $\mathrm{V}_{\mathrm{IN}}$ volts Not practical for off-line |
| $\mathrm{C}_{\mathrm{CL}}$ <br> (cap value) | Same value as low-side for given ripple voltage | Same value as high-side for given ripple voltage |
| Clamp MOSFET (Q2) | N -Channel Can be used for $>500 \mathrm{~V}$ | P-Channel Can be used up to 500 V |
| Gate Drive | Gate drive transformer required | Level shifting gate drive required |

## Active Clamp Forward Converter Zero Voltage Switching (ZVS)

> ZVS occurs when the voltage across the MOSFET, $\mathrm{V}_{\mathrm{DS}}$, is positioned to "zero volts" prior to the start of the next switching cycle.
> Benefits of ZVS

- Reduced switching losses
- Higher operating frequency possible (smaller passive component size)
- Higher converter efficiency
- Increased reliability
- Reduced radiated emissions (EMI)

(a) Hard Switching

(b) "Ideal" ZVS


## Active Clamp Forward Converter Zero Voltage Switching (ZVS)

> Parasitic elements can be used to benefit ZVS

> Active Clamp Forward converter uses fixed frequency resonant transitions to achieve ZVS when specific operating conditions are met

## FAIRCHILD

## Single Ended (<500W)

## 2 Switch Forward Converter


> Advantages

- Ruggedness
- MOSFET voltage stress limited to $\mathrm{V}_{\text {IN }}$
- Magnetizing energy recycled by D3, D4
- Universal input, 150 W < P < 500 W
$>$ Disadvantages
- Limited to less than 50\% duty cycle
- High side gate drive required for Q2
- Hard switching
> Transfer Function
$\frac{V_{O}}{V_{I N}}=\frac{N_{S}}{N_{P}} \times D$


## FAIRCHILD <br> Single Ended (>1kW)

## Interleaved 2 Switch Forward Converter

> Advantages

- Can operate multiple power stages out of phase
- Ripple current cancellation at output capacitor
- Reduced RMS current at input capacitor
- Multiple stages can add up to kW of power
- Smaller output inductors can improve transient response
> Disadvantages
- Design complexity
- PCB layout can be challenging



## Double Ended Converter Topologies

## Double Ended Topologies Defined

Double Ended - Transformer operation occurs in first and third quadrants


Half-Bridge, Full-Bridge
> Symmetrical operation between first and third quadrants
> No transformer reset circuitry required



Active Clamp Forward
> "Single ended" but operates slightly into the third quadrant

## FAIRCHILD ${ }_{\text {w }}$

## Double Ended (<500 W) Half Bridge Converter (Symmetrical)


> Advantages

- Better transformer utilization
- MOSFET voltage stress limited to $\mathrm{V}_{\text {IN }}$
- Best for high $\mathrm{V}_{\mathrm{IN}}$ off line applications up to 500W
- Single winding primary
- Transformer balanced by C1 and C2
- Asymmetric and resonant versions can ZVS
> Disadvantages
- Totem pole primary gate drive
- High primary current
- Possible cross conduction between Q1 and Q2
- Hard switching
> Transfer Function

$$
\frac{V_{O}}{V_{I N}}=2 \times \frac{N_{S}}{N_{P}} \times D
$$



What if an asymmetric square wave is introduced to the transformer?
$\rightarrow$ Transformer will be saturated
What if an asymmetric square wave is introduced to the transformer in series with a DC blocking capacitor?
$\rightarrow$ Not saturated due to the voltage of the blocking capacitor, $C_{B}$


## fairchid. Asymmetrical Half Bridge Converter


(a) Symmetrical HB waveforms

(b) Asymmetrical HB waveforms

> Asymmetrical Gate Drive

- Q2 modulated by D
- Q1 driven by 1-D
- Fixed dead time between Q1 and Q2
- Dead time optimized for ZVS and anti cross conduction
- Fixed frequency ZVS PWM operation
- Near $D=0.5$, operation is same as symmetrical HB
> BUT, excessive voltage stress is applied to secondary rectifier at $\mathrm{V}_{\mathrm{IN}(\mathrm{MAX})}$


## Asymmetrical Half Bridge Converter

> Secondary rectifier voltage stress:

$$
V_{D 1}=D \times V_{O} \quad V_{D 2}=V_{O} \times(1-D)
$$

> Reverse recovery and parasitic ringing
> Wide $\Delta \mathrm{D}$ range requires use of high voltage rectifiers
> Converter operates best near $\mathrm{D}=0.5$
> Advantages

- Fixed frequency ZVS
- Constant power transfer (D and 1-D) reduces output ripple
- Power stage can be controlled using any active clamp PWM controller
> Disadvantages
- High voltage stress on secondary rectifier
- Poor transient response due to blocking capacitor, $\mathrm{C}_{\mathrm{B}}$


## FAIRCHILD ${ }_{\text {w }}$

## LLC Resonant Half Bridge Converter

$>$ Square wave generator: produces a square wave voltage, $V_{d}$ by driving switches, Q1 and Q2 with alternating 50\% duty cycle for each switch.
$>$ Resonant network: consists of $\mathrm{L}_{\mathrm{kk}}, \mathrm{L}_{\mathrm{kks}}, \mathrm{L}_{\mathrm{m}}$ and $\mathrm{C}_{\mathrm{r}}$. The current lags the voltage (inductive) applied to the resonant network which allows the MOSFET's to be turned on with zero voltage.
> Rectifier network: produces DC voltage by rectifyina AC current

Square wave generator


## LLC Converter Characteristics

$>$ Two resonant frequencies ( $f_{o}$ and $f_{p}$ ) exist
$>$ The gain is fixed at resonant frequency $\left(f_{o}\right)$ regardless of the load variation

$$
M_{@ f=f_{o}}=1
$$

> Peak gain frequency exists between $f_{o}$ and $f_{p}$
> As Q decreases (load current decreases), the peak gain frequency moves to $f_{p}$ and higher peak gain is obtained
> As Q increases (load current increases), peak gain frequency moves to $f_{o}$ and the peak gain drops

$$
f_{P}=\frac{1}{2 \pi \sqrt{\left(L_{M}+L_{r}\right) C_{r}}} \quad f_{o}=\frac{1}{2 \pi \sqrt{L_{r} C_{r}}}
$$



## LLC Topology Variations

## Primary Side Variation



Transformer across the high side MOSFET


Transformer across the low side MOSFET


Split resonant capacitor


Split resonant capacitor with clamping diode

## Secondary Side Variation



Full bridge rectifier with single winding


Voltage doubler rectifier with single winding


Synchronous rectifier with center tab winding

## LLC Resonant Half Bridge Converter

> Advantages of the LLC resonant converter

- Narrow frequency variation range over wide load range
- Zero voltage switching even at no load condition
- Reduced switching loss through ZVS $\rightarrow$ Improved efficiency and EMI
- When the two magnetic components are implemented with a single core (use the leakage inductance as the resonant inductor), one component can be saved
> Disadvantages of the LLC resonant converter
- Can optimize performance at one operating point, but not with wide range of input voltage and load variations (too wide frequency range)
- Difficult to regulate the output at no load condition
- Significant current may circulate through the resonant network, even at the no load condition
- Quasi-sinusoidal waveforms exhibit higher peak values than equivalent rectangular waveforms
- High output current ripple


Double Ended (<500W)
> Advantages

- Lower primary current compared to HB
- Best for lower $\mathrm{V}_{\mathbb{I}}$, such as telecom DCDC of US Line Voltage
- Simple low-side gate drive
- Low output current ripple
> Disadvantages
- High voltage $\left(2 x V_{\text {IN }}\right)$ on primary MOSFETs
- Transformer flux walking (VMC only)
- Center tapped transformer structure
- Hard switching
> Transfer Function
$\frac{V_{O}}{V_{I N}}=2 \times \frac{N_{S}}{N_{P}} \times D$



## Double Ended (>500W)

Full Bridge Converter (PWM)
> Advantages

- MOSFET voltage stress limited to $\mathrm{V}_{\mathrm{IN}}$
- Twice the power compared to half bridge
- Single winding primary
> Disadvantages
- Dual, totem pole primary gate drive
- Hard switching (Non-ZVT)
- Parasitics degrade circuit performance
- Circuit complexity
> Transfer Function
$\frac{V_{O}}{V_{I N}}=2 \times \frac{N_{S}}{N_{P}} \times D$

FAIRCHILD
Double Ended (>500W)
Phase Shifted Full Bridge Converter

> Advantages

- High Efficiency ZVS
- Highest single stage processing power
- MOSFET voltage stress limited to $\mathrm{V}_{\mathbb{I N}}$
- Twice the power compared to half bridge
- Full wave rectified secondary
- Single winding primary
- Excellent choice for EU line voltage (PFC preregulator) with output power >1kW
> Disadvantages
- Dual, high side primary gate drive
- Circuit complexity
- High circulating primary current for ZVS
- Loss of ZVS at light load current
> Transfer Function

$$
\frac{V_{O}}{V_{I N}}=2 \times \frac{N_{S}}{N_{P}} \times D
$$

FAIRCHILD ${ }^{*}$

## Phase Shifted Full Bridge Converter zVS Waveforms







(a) $I_{O}=100 \%$
(b) $\mathrm{I}_{\mathrm{O}}=35 \%$
(c) $\mathrm{I}_{\mathrm{O}}=0 \%$

A="Active" or power phase P="Passive" or freewheel phase

## FAIRCHILD <br> Current Doubler Rectifier

What is it? - A full wave alternative rectification technique compatible with all double ended converter topologies


Phase Shifted Full Bridge with Current Doubler

> Better thermal distribution for higher current outputs
> Each inductor carries half the load current at half the switching frequency
> Ripple currents cancel as a function of D
> Single winding secondary

## High Power Topology Summary

| Topology | Transformer | Primary <br> Switches | $\mathrm{V}_{\mathrm{DS}}$ | "Ideal" Application |
| :--- | :--- | :--- | :--- | :--- |
| CCM Boost | Inductor <br> (non-isolated) | 1 | $\mathrm{~V}_{\text {OUT }}$ | High power PFC $>300 \mathrm{~W}$ <br> Interleaved PFC $>$ Several kW |
| BCM Boost | Inductor |  |  |  |
| (non-isolated) |  |  |  |  |

## Summary

## Power Converter Topology Trends:

- Advanced control algorithms breathing new life into classic topologies...
- Buck $\rightarrow$ multiphase buck
- Boost $\rightarrow$ BCM boost
- Flyback $\rightarrow$ QR flyback
- Forward $\rightarrow$ active clamp forward
- Half bridge $\rightarrow$ LLC resonant
- Full bridge $\rightarrow$ PSFB
- The innovation trends are in new control methods that are pushing the limits of power processing, converter size, and operating frequencies.
- Better uses of zero-voltage switching and zero-current switching for lower stresses
- Better use of parasitic elements
- Digital techniques including non-linear and multi-variant control
- Better synchronous rectification timing control

